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SUMMaRY 

An investigation has been conducted i n  the Iangley 4- by 4 
supersonic pressure tunnel t o  determine the s t a t i c  longitudinal 
lateral s t a b i l i t y  and control characterist ics of an 0.065-sca 
of the Chance V o u g h t  R e g u l u s  I1 missile. The tests w e r e  made 
numbers of 1.41, 1.61, and 2.01 m d  Reynolds numbers, based on 
mean geometric chord, of 1.86 x 10 6 , 1.79 x 10 6 , and 1.9 X 

respectively. 

IMTRODUCTION 

A t  the request of the Bureau of Aeronautics, Department of the Navy, 
an  investigation of the aerodynamic characterist ics of the Chance Vought 
Regulus I1 missile (XRSSg-N-9) at sqersonic  speeds has been undertaken 
by the National Advisory Committee f o r  Aeronautics. 

This missile i s  a jet-propelled surface-to-surface type having a 
wing with 43.5O of sweep of the quarter-chord l ine,  an aspect r a t i o  
of 2.75, taper r a t i o  of 0.6, and modified circular-arc a i r f o i l  sections 
with a thickness of 4 percent chord. 
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The present paper contains the results obtained at Mach numbers 
of 1.41, 1.61, and 2.01 in the Langley 4- by &-foot supersonic pressure 
tunnel. 

COEFFICIENTS AND SYMBOIS 

The results of the tests are presented as standard NACA coefficients 
of forces and moments. 
system (fig. 1) with the reference center-of-moments on the longitudinal 
center line of the basic body of revolution at a longitudinal station 
corresponding to the leading edge of the wing m e a n  geometric chord 
(fig. 2) .  

The data are referred to the stability-axes 

The coefficients and symbols are defined as follows: 

lift coefficient, -Z 
qs CL 

CN 
Normal force normal-force coefficient, qs 

CX 

CC 

CD 

CY 

c, 

Cn 

longitudinal-force coefficient, - X qs 

Chord force 
qs chord-f orce coefficient, 

drag coefficient, - Drag 

lateral-force coefficient, - Y 

qs 

qs 

rolling-moment coefficient, - L 
qsb 

pitching-moment coefficient, - M' 
qsS 

yawing-moment coefficient, - N 

elevon hinge-moment coefficient, - H 
2qMe 

co L 
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s, 

L/ D 

force along X - a x i s  

force along Y-axis 

force along Z-axis 

moment about X-axis 

moment ab out Y-axis 

moment about Z-axis 

elevon hinge moment about hinge axis 

free-stream dynamic pressure 

k c h  number 

wing area including body intercept ,  88.47 sq in .  

moment-area of elevon 

wing span, 15.63 in .  

wing mean geometric chord, 5.78 in.  

neutral-point location, percent 6 

angle of a t tack of fuselage center l i ne ,  deg 

angle of s ides l ip  of fuselage center l ine ,  deg 

elevon deflection normal t o  the hinge l ine,  deg 

rudder deflection, deg 

l if t-drag r a t io ,  

rise i n  longitudinal-force coeff ic ient  with l i f t  above 
minimum longitudinal force 

pitching-iiiauerit coefficient a t  zero l i f t  

mass flow r a t i o  

3 
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MODEL AM> APPARATUS 

A three-view drawing of the model and de ta i l s  of various coqonents 
are presented i n  figures 2 and 3. 
model are presented i n  table  I. 
are shown i n  figuse 4. 

The geometric character is t ics  of the 
Photographs of two of the configurations 

The model was equipped with a wing having 43.5O of sweep of the 
quarter-chord l ine,  aspect r a t i o  2.75, taper r a t i o  0.6, and modified 
circular-arc a i r f o i l  sections with a thickness of 4 percent chord 
(see table I). The wing  was mounted 0.26 inch above the fuselage 
center l ine  and had zero incidence and dihedral. 

Elevons of the plain trailing-edge f l ap  type provided both longi- 

Deflections of a l l  control surfaces 
tudinal  and l a t e r a l  control ( f ig .  2 ) .  
t a i l  and movable rudder ( f ig .  2).  
w e r e  set manually. 

The model had a swept ve r t i ca l  

Coordinates of the basic fuselage are presented i n  table 11. A 

A scoop i n l e t  equipped with a boundary-layer diver ter  
simulated static-pressure probe was attached t o  the nose of the fuselage 
(see f ig .  4).  
( f ig .  3) was incorporated in to  the fuselage t o  simulate the internal-  
flow conditions of the missile. 
throt t led manually t o  provide variable mass-flow rat ios ,  was discharged 
out the rear  of the fuselage around the sting. The limited t r ave l  of 
the thro t t l ing  mechanism could not produce a zero internal-flow condi- 
tion. A sol id  f a i r ing  (f igs .  3 and 4) was used fo r  a l l  the "closed 
in l e t "  configurations t o  permit investigations of the model with no 
in te rna l  air flow. 
t o  permit investigation of various combinations of components. 

The i n l e t  air flow, which could be 

The wing and ver t ica l  t a i l  were removable i n  order 

Force and moment neasurements were made through the use of an 
experimental, a l l  welded, six-component strain-gage balance furnished 
by NACA. This experimental balance i s  characterized by an extremely 
small s ize  but with an attendant increase i n  balance deflections and 
interactions. Space l imitation was the primary consideration i n  i t s  
selection. 
nished by the contractor t o  f a c i l i t a t e  the measurement of elevon hinge 
moments. 

"he l e f t  elevon was equipped with a strain-gage beam fur- 

The following pressure measurements were made: 

(1) the s t a t i c  pressure i n  the balance chamber inside the model 

(2) the s ta t ic  pressure on the riro base area of the fuselage 

(3) the t o t a l  and s t a t i c  pressures of the exi t  air flow with open 
i n l e t  by means of a total-pressure rake fastened t o  the s t ing  a t  the 
base of the model. 
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Since the model vas mounted on a 5' bent sting, it was possible t o  
test through an angle-of-attack range a t  angles of s ides l ip  of Oo and 
about f 5 O  aad through an angle-of-sideslip range a t  angles of a t tack  of 
Oo and about f 5 O .  

TEST CONDITIONS AND PROCEDURE 

The conditions f o r  the t e s t s  were: 

Machnuniber. . . . . . . . . . . . .  I 1.41 
Reynolds number, based on E 
Stagnation pressure, lbjsq in. . . .  
Stagnation temperature, OF . . . . .  
Stagnation de-ioint,  OF . . . . . . .  
%ch number variation . . . . . . . .  
Flow angle i n  horizontal or 

v e r t i c a l  plane, deg . . . . . . . .  

. . . . .  I 1.86 x 106 
13 
100 

< -25 
f O .  01 

fO. 1 

1.61 

13 
100 
-3 

fO. 01 

1.79 x 106 

fO. 1 

2.01 
1.54 x 106 

100 
< -25 

fO. 015 lI 

io.  11 - 

A t  each Mach number the effects  of mass-flow r a t i o  on lift, longi- 
tudinal force, and pitching maanent were determined f o r  a limited nmiber 
of throttle settings for a = f3 = 0'. From these r e su l t s  a t h r o t t l e  
setting was selected t o  give the desired mass flow f o r  the remining 
tests. 

Tests were made through an angle-of-attack range fram about -U0 

Additional 
t o  about 8O for  zero angle of s idesl ip  and through an angle-of-sideslip 
range of about -loo t o  about bo f o r  zero angle of attack. 
tests were made through the angle-of-attack range a t  fl = 5 O  fo r  M = 1.41 
and 1.61 a$ f3 -5O fo r  M = 2.01. 

CORREXTIONS AND ACCURACY 

The angles of at tack and s idesl ip  were corrected fo r  the deflection 
of the balance and sting under load. 
deflection presented io  t h i s  report  are not corrected f o r  deflection 
due t o  load. Approximate values of elevon deflection under load are 
presented in the following table: 

The nominal values for elevon 
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Although the variation of 
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rudder deflection was not known. it ~ ~ ras 
assumed t o  be small (within t0.1') since the surface was  r ig id ly  fixed 
i n  the desired posit ion by bead of solder along the leading edge of the 
rudder. 

Base-pressure measurements were made and the longitudinal-force 
coefficients of a l l  configurations were adjusted t o  free-stream s t a t i c  
pressure a t  the base. For a l l  configurations with the open in le t ,  the 
i n t e rna l  pressure i n  the m o d e l  balance chamber was measured and correc- 
t ions fo r  a buoyant force on the balance were applied t o  the results. 
The in te rna l  drag  was determined frm the change i n  mamentum from free- 
stream conditions t o  measured conditions a t  the duct exit. 
buoyant force, and in te rna l  drag have been subtracted from the t o t a l  
longitudinal-force measurements s o  that a net external longitudinal- 
force coefficient was obtained. 
and 0.92 f o r  the s t a b i l i t y  and control tests a t  Mmh numbers of 1.41, 
1.61, and 2.01, respectively. 
buoyant longitudinal-force coefficients a t  
numbers i s  indicated by the following table: 

Base drag, 

Wss-flow ra t io s  were about 0.85, O.B, 

The magnitude of the base, internal,  and 
a = Oo fo r  the three Mach 

~~ 

Base C x . .  . . . . . . . . . . . . . . .  
Internal  Cx.. . . . . . . . . . . . . .  
Bouyant cx . . . . . . . . . . . . . . .  

___.I__ 

1 

M = 1.41 

-0.0012 
-0.0032 
0.0092 

I 

The estimated errors  i n  %he individxal zeasured quantit ies are as 
follows : 
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t o .  002 
-rO.OOl 
to. 005 

fo. 0001 
to.  0001 
to .  0014 

t o .  1 
20.1 

I 
' to.1 
, t0.01 

..a 
0 

..e. 
0 0. - 0 .  a 
0.. e 

a000 
0 .  

0.00 . 0. 
0 .  
00. 0 

1 .  

I .  

a 

IM = 1.41 

CL, CN.. . * . . . . . . . . . . . . . . 
cc, cx, CD.. . . . . . . . . . . . . . . 
c,. . . 
c1 . . .  
cn.. . . 
c y . .  * 

P, deg 
6r  and 
elevon 

M . . .  

u, deg . 

. . . . . . . . . 

. . . . . . . . . 
* . . . . . . . . 
. . . . . . . . . 
. . . . . . . . . 
. . *  . . . . . .  
6e (corrected for 
under load), deg 
. . . . . . . . . 

. . . . . . . 

. . . . . . .  

. . . . . . .  

. . . . . . . 

. . . . . . . 

. . . . . . . 
deflection of 
. . . . . . .  
. . . . . . . 

~. -~ 

PRESENTATION OF RESULTS 

The results are presented as follows: 

M = 1.61 

to .  002 
to. 001 
20.005 

to. 0001 
to.  0001 
to. 0014 

t o .  1 
+o. 1 

M = 2.01 

+0.002 

tO.005 
t o .  0002 
*o. 0002 
t o .  0016 

to .  1 
20.1 

Figure 

Effects of mass flow on the aerodynamic characteristics 
in pitch at several Mach numbers. a = p = 0'. . . . . . . . . 

Effects of internal flow on the variation of the aerodynamic 
characteristics in pitch with hch number. u = B = O0. . . . . 

Schlieren photographs of open and closed inlet configurations . . 
Aerodynanic characteristics in pitch for various component 
parts. M = 2.01. . . . . . . . . . . . . . . . . . . . . . . . 

Effect of internal flow on the aerodynamic characteristics in 
pitch. 6eL = 6, = 0'; B = 0'. 

R 
. . . . . . . . . . . . . . . 

Effect of elevon deflection on the aerodynamic characteristics 
in pitch. p = Oo; EeL - -6eR. . . - - .  . . . . . . . . . . 

Pitch control characteristics. a = B = Oo. . . . . . . . . . . . 
Drag due to l l f 4  . - . . . . . . . . . . . . . . . . . . . . . . . 
Longitudinal characteristics for  trim . . . . . . . . . . . . . . 

5 

6 

7 

8 

9 

10 

If 

12 

13 
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Figure 

S- of longitudinal. parameters . . . . . . . . . . . . . . . .  14 
Effect of internal flow on the aerodynamic characteristics 
in sideslip. . . . . . . . . . . . . . . . . . . . . . . . . . .  15 

Effect of angle of attack on the aerodynamic characteristics 
insideslip. . . . . . . . . . . . . . . . . . . . . . . . . .  16 

Variation of yawing-moment, rolling-mament, and side-force . . . . . . . . . . . . . .  coefficients with lift coefficient. 17 

Variation of sideslip derivatives with lift coefficient. . . . .  18 
Effect of rudder deflection on the aercdynamic characteristics 
insideslip. . . . . . . . . . . . . . . . . . . . . . . . . .  19 

Directional control characteristics. a =  Oo. . . . . . . . . . .  20 

Variation of rudder characteristics with lift coefficients. 
M = 2.01; 8 = Oo. . . . . . . . . . . . . . . . . . . . . . .  21 

Suxnaxy of directional stability and control characteristics. . 22 

Aerodpamic characteristics in sideslip for various axis 
. . . . . . . . . . . . . . . . .  23 systems. u 5'; M=1.61. 

Lateral control characteristics. . . . . . . . . . . . . . . . .  24 
kcremental aerodynamic characteristics due to differential . . . . . . . . . . . . . . . . . . . . . .  elevon deflection. 25 

The basic results are presented without analysis in order to expe- 
dite issuance. However, some general observations relative to the 
results might be made. 

One result of significance is the large negative value of pitching- 
moment  coefficient at zero lift 
apparently is caused by the air jnkt (see fig. 9).  
these large negative values of 
tions for trim with a resultant increase in drag and reduction in maneu- 
verability. Mans of reducing the negative Cmo wauld be of consider- 
able importance. 

commm 

C.0 with zero control deflection that 
The occurrence of 

necessitate large control deflec- 
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n$ Another r e su l t  of interest  concerns the direct ional  s t a b i l i t y  
which decreases quite rapidly with both increasing Mach number and angle 
of at tack u n t i l  regions of ins tab i l i ty  are  reached (see f igs .  19 and 23). 
The l o w  i n i t i a l  value of C 
-anstable moment of the wing-body combination. 
t o  control the missile directionally with these l o w  values of s t a b i l i t y ,  
it w o u l d  appear t h a t  the law together with a rather large variation 

of pitching moment with s idesl ip  (see f ig .  lg(a), for example) might lead 
t o  cross-coupled motions tha t  may be d i f f i c u l t  t o  control. Further study 
of these e f fec ts  would, of course, be desirable. 

C 

appears t o  be a r e su l t  of the large 
Although it may be possible 

Cn $ 
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TABIX I.- GEOMETRIC CHARACTERISTICS OF MODEL 

Wing: 
Total  area, including fuselage intercept,  sq in .  . . . . .  
Span, in .  . . . . . . . . . . . . . . . . . . . . . . . .  
Root chord, in .  . . . . . . . . . . . . . . . . . . . . . .  
T i p  chord, in.  . . . . . . . . . . . . . . . . . . . . . .  
Length of mean geametric chord, E ,  in. . . . . . . . . .  
A s p e c t r a t i o  . . . . . . . . . . . . . . . . . . . . . . .  
T a p e r r a t i o . .  . . . . . . . . . . . . . . . . . . . . . .  
Sweep angle of E/% l ine ,  deg . . . . . . . . . . . . . . .  

Maximum thickness, percent chord . . . . . . . . . . . .  
Location of maximum thickness, percent chord . . . . . .  
Trai l ing edge thickness, percent chord . . . . . . . . .  
Dihedral, deg . . . . . . . . . . . . . . . . . . . . . .  
Incidence, deg . . . . . . . . . . . . . . . . . . . . .  

'Airfoil section, streamwise: 

11 

88.47 
13.63 
7.08 
4.27 
5-78 
2.75 
0.60 
43.5 

4.0 
53-7 
0.04 

0 
0 

Elevons : 
Area behind hinge l ine,  each, sq in .  . . . . . . . . . . .  4.61 
Moment of area, each, cu in.  . . . . . . . . . . . . . . .  2.49 
Span, in .  . . . . . . . . . . . . . . . . . . . . . . . .  3.42 
Sweep of hinge l ine,  deg 37.3 . . . . . . . . . . . . . . . . .  

Vert ical  t a i l :  
span (to model center l ine) ,  in .  . . . . . . . . . . . . .  5.07 
Area ( t o  m o d e l  center l i ne ) ,  sq in.  . . . . . . . . . . .  23.08 
Tip chord ( theoret ical) ,  in. 2-35 
Root chord, in.  . . . . . . . . . . . . . . . . . . . . .  7.16 
Length of tail mean geometric chord, in.  . . . . . . . . .  5.28 
Aspect r a t i o  . . . . . . . . . . . . . . . . . . . . . . .  1. I 2  
Taper r a t i o  ( theore t ica l  t ip )  0-  33 
Rudder area, sq in.  2- 35 
Air fo i l  section . . . . . . . . . . . . . . . . . . . .  Same as w i n g  

. . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . .  

Fuselage : 
Iength (without probe), in.  . . . . . . . . . . . . . . .  
&ximumdiameter,  in. . . . . . . . . . . . . . . . . . .  
Maximum cross-sectional area, s q i n .  . . . . . . . . . . .  
Base inner d i m t e r ,  in .  . . . . . . . . . . . . . . . . .  
Sting d i e t e r ,  in .  . . . . . . . . . . . . . . . . . . .  
Area of rim of base, sq in. . . . . . . . . . . . . . . .  
Maximum length-diameter r a t i o  . . . . . . . . . . . . . . . .  
Total b ~ s e  =ea (annular + r i m  + sting),  sq in .  . . . . .  
Amiular area of base fo r  in te rna l  flaw, sq in .  . . . . . .  

ISymmetric a i r f o i l  section defined by 

4-4-15 
3.25 
ll. 10 
2-01 
1.25 
0.45 
i. 9 
17.6 
3.62 
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TABU3 11.- COORDINp,TES OF TBE BASIC FUSELAGE 

[I. is  distance f r o m  nose i n  in.; r i s  radius i n  i n 4  

X 

O.OO0 
.038 - 075 
.150 
-225 
.300 
.450 
.6ol 
-751 - 901 
1.502 
2.252 
3 003 
3- 754 
4.505 
6.006 
7.508 
9- 009 
10.511 
12.012 
13.514 
15.015 
9 .761  
37.765 
40.086 
41.850 
42.850 
43.850 
44.150 

r 

0.000 
.010 
033 
-061 
-085 
.107 
-148 
.184 
.218 
.250 
.362 
.486 - 596 - 698 - 792 .w 
1.117 
1- 255 
1.376 
1.478 
1.567 
1.625 
1.625 
1.586 
1.493 
1.345 

1.115 
1.065 

1.245 
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Figure 5.- Effects of m a s s  flow on the aerodynamic character is t ics  i n  
a = p = 0'. p i t c h  at several  Mach numbers. 

closed in l e t .  
x/rrQ = 0 is fo r  fa i red 

. .  
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chzi-acteristics i n  pi tch w i t h  Mach nuxber. a ;= p ;= 0'. 
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Figure 3.- Effect of in te rna l  f low on aerodynamic charac te r i s t ics  i n  
pitch. 6eL = 6% = 0'; p = 0'. Inlet closed means faired closed, 
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Figure 10.- Continued. 
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